Efficient task assignment for spatial crowdsourcing: A combinatorial fractional optimization approach with semi-bandit learning
نویسندگان
چکیده
Spatial crowdsourcing has emerged as a new paradigm for solving problems in the physical world with the help of human workers. A major challenge in spatial crowdsourcing is to assign reliable workers to nearby tasks. The goal of such task assignment process is to maximize the task completion in the face of uncertainty. This process is further complicated when tasks arrivals are dynamic and worker reliability is unknown. Recent research proposals have tried to address the challenge of dynamic task assignment. Yet the majority of the proposals do not consider the dynamism of tasks and workers. They also make the unrealistic assumptions of known deterministic or probabilistic workers’ reliabilities. In this paper, we propose a novel approach for dynamic task assignment in spatial crowdsourcing. The proposed approach combines bi-objective optimization with combinatorial multiarmed bandits. We formulate an online optimization problem to maximize task reliability and minimize travel costs in spatial crowdsourcing. We propose the distance-reliability ratio (DRR) algorithm based on a combinatorial fractional programming approach. The DRR algorithm reduces travel costs by 80% while maximizing reliability when compared to existing algorithms. We extend the DRR algorithm for the scenario when worker reliabilities are unknown. We propose a novel algorithm (DRRUCB) that uses an interval estimation heuristic to approximate worker reliabilities. Experimental results demonstration that the DRR-UCB achieves high reliability in the face of uncertainty. The proposed approach is particularly suited for real-life dynamic spatial crowdsourcing scenarios. This approach is generalizable to the similar problems in other areas in expert systems. First, it encompasses online assignment problems when the objective function is a ratio of two linear functions. Second, it considers situations when intelligent and repeated assignment decisions are needed under uncertainty.
منابع مشابه
Hybrid Meta-heuristic Algorithm for Task Assignment Problem
Task assignment problem (TAP) involves assigning a number of tasks to a number of processors in distributed computing systems and its objective is to minimize the sum of the total execution and communication costs, subject to all of the resource constraints. TAP is a combinatorial optimization problem and NP-complete. This paper proposes a hybrid meta-heuristic algorithm for solving TAP in a ...
متن کاملAn Efficient Algorithm for Learning with Semi-bandit Feedback
We consider the problem of online combinatorial optimization under semi-bandit feedback. The goal of the learner is to sequentially select its actions from a combinatorial decision set so as to minimize its cumulative loss. We propose a learning algorithm for this problem based on combining the Follow-the-Perturbed-Leader (FPL) prediction method with a novel loss estimation procedure called Geo...
متن کاملBandit-Based Task Assignment for Heterogeneous Crowdsourcing
We consider a task assignment problem in crowdsourcing, which is aimed at collecting as many reliable labels as possible within a limited budget. A challenge in this scenario is how to cope with the diversity of tasks and the task-dependent reliability of workers; for example, a worker may be good at recognizing the names of sports teams but not be familiar with cosmetics brands. We refer to th...
متن کاملStochastic Online Greedy Learning with Semi-bandit Feedbacks
The greedy algorithm is extensively studied in the field of combinatorial optimization for decades. In this paper, we address the online learning problem when the input to the greedy algorithm is stochastic with unknown parameters that have to be learned over time. We first propose the greedy regret and -quasi greedy regret as learning metrics comparing with the performance of offline greedy al...
متن کاملEfficient Algorithms for Adversarial Contextual Learning
We provide the first oracle efficient sublinear regret algorithms for adversarial versions of the contextual bandit problem. In this problem, the learner repeatedly makes an action on the basis of a context and receives reward for the chosen action, with the goal of achieving reward competitive with a large class of policies. We analyze two settings: i) in the transductive setting the learner k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 58 شماره
صفحات -
تاریخ انتشار 2016